Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Med Phys ; 51(4): 2893-2904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368605

RESUMO

BACKGROUND: Photon-counting computed tomography (PCCT) has recently emerged into clinical use; however, its optimum imaging protocols and added benefits remains unknown in terms of providing more accurate lung density quantification compared to energy-integrating computed tomography (EICT) scanners. PURPOSE: To systematically assess the performance of a clinical PCCT scanner for lung density quantifications and compare it against EICT. METHODS: This cross-sectional study involved a retrospective analysis of subjects scanned (August-December 2021) using a clinical PCCT system. The influence of altering reconstruction parameters was studied (reconstruction kernel, pixel size, slice thickness). A virtual CT dataset of anthropomorphic virtual subjects was acquired to demonstrate the correspondence of findings to clinical dataset, and to perform systematic imaging experiments, not possible using human subjects. The virtual subjects were imaged using a validated, scanner-specific CT simulator of a PCCT and two EICT (defined as EICT A and B) scanners. The images were evaluated using mean absolute error (MAE) of lung and emphysema density against their corresponding ground truth. RESULTS: Clinical and virtual PCCT datasets showed similar trends, with sharper kernels and smaller voxel sizes increasing percentage of low-attenuation areas below -950 HU (LAA-950) by up to 15.7 ± 6.9% and 11.8 ± 5.5%, respectively. Under the conditions studied, higher doses, thinner slices, smaller pixel sizes, iterative reconstructions, and quantitative kernels with medium sharpness resulted in lower lung MAE values. While using these settings for PCCT, changes in the dose level (13 to 1.3 mGy), slice thickness (0.4 to 1.5 mm), pixel size (0.49 to 0.98 mm), reconstruction technique (70 keV-VMI to wFBP), and kernel (Qr48 to Qr60) increased lung MAE by 15.3 ± 2.0, 1.4 ± 0.6, 2.2 ± 0.3, 4.2 ± 0.8, and 9.1 ± 1.6 HU, respectively. At the optimum settings identified per scanner, PCCT images exhibited lower lung and emphysema MAE than those of EICT scanners (by 2.6 ± 1.0 and 9.6 ± 3.4 HU, compared to EICT A, and by 4.8 ± 0.8 and 7.4 ± 2.3 HU, compared to EICT B). The accuracy of lung density measurements was correlated with subjects' mean lung density (p < 0.05), measured by PCCT at optimum setting under the conditions studied. CONCLUSION: Photon-counting CT demonstrated superior performance in density quantifications, with its influences of imaging parameters in line with energy-integrating CT scanners. The technology offers improvement in lung quantifications, thus demonstrating potential toward more objective assessment of respiratory conditions.


Assuntos
Enfisema , Pneumopatias , Enfisema Pulmonar , Humanos , Estudos Transversais , Estudos Retrospectivos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem
2.
Phys Med Biol ; 69(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38052093

RESUMO

Objective.Virtual imaging trials enable efficient assessment and optimization of medical image devices and techniques via simulation rather than physical studies. These studies require realistic, detailed ground-truth models or phantoms of the relevant anatomy or physiology. Anatomical structures within computational phantoms are typically based on medical imaging data; however, for small and intricate structures (e.g. trabecular bone), it is not reasonable to use existing clinical data as the spatial resolution of the scans is insufficient. In this study, we develop a mathematical method to generate arbitrary-resolution bone structures within virtual patient models (XCAT phantoms) to model the appearance of CT-imaged trabecular bone.Approach. Given surface definitions of a bone, an algorithm was implemented to generate stochastic bicontinuous microstructures to form a network to define the trabecular bone structure with geometric and topological properties indicative of the bone. For an example adult male XCAT phantom (50th percentile in height and weight), the method was used to generate the trabecular structure of 46 chest bones. The produced models were validated in comparison with published properties of bones. The utility of the method was demonstrated with pilot CT and photon-counting CT simulations performed using the accurate DukeSim CT simulator on the XCAT phantom containing the detailed bone models.Main results. The method successfully generated the inner trabecular structure for the different bones of the chest, having quantiative measures similar to published values. The pilot simulations showed the ability of photon-counting CT to better resolve the trabecular detail emphasizing the necessity for high-resolution bone models.Significance.As demonstrated, the developed tools have great potential to provide ground truth simulations to access the ability of existing and emerging CT imaging technology to provide quantitative information about bone structures.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Adulto , Humanos , Masculino , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Imagens de Fantasmas , Osso e Ossos/diagnóstico por imagem
3.
ArXiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37461423

RESUMO

Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin, flexible valve leaflets. There has been longstanding scientific, engineering, and medical interest in creating mathematical models of the heart that capture, explain, and predict these fluid-structure interactions. However, existing computational models that account for interactions among the blood, the actively contracting myocardium, and the cardiac valves are limited in their abilities to predict valve performance, resolve fine-scale flow features, or use realistic descriptions of tissue biomechanics. Here we introduce and benchmark a comprehensive mathematical model of cardiac fluid dynamics in the human heart. A unique feature of our model is that it incorporates biomechanically detailed descriptions of all major cardiac structures that are calibrated using tensile tests of human tissue specimens to reflect the heart's microstructure. Further, it is the first fluid-structure interaction model of the heart that provides anatomically and physiologically detailed representations of all four cardiac valves. We demonstrate that this integrative model generates physiologic dynamics, including realistic pressure-volume loops that automatically capture isovolumetric contraction and relaxation, and predicts fine-scale flow features. None of these outputs are prescribed; instead, they emerge from interactions within our comprehensive description of cardiac physiology. Such models can serve as tools for predicting the impacts of medical devices or clinical interventions. They also can serve as platforms for mechanistic studies of cardiac pathophysiology and dysfunction, including congenital defects, cardiomyopathies, and heart failure, that are difficult or impossible to perform in patients.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37125262

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the top three causes of death worldwide, characterized by emphysema and bronchitis. Airway measurements reflect the severity of bronchitis and other airway-related diseases. Airway structures can be objectively evaluated with quantitative computed tomography (CT). The accuracy of such quantifications is limited by the spatial resolution and image noise characteristics of the imaging system and can be potentially improved with the emerging photon-counting CT (PCCT) technology. This study evaluated the quantitative performance of PCCT against energy-integrating CT (EICT) systems for airway measurements, and further identified optimum CT imaging parameters for such quantifications. The study was performed using a novel virtual imaging framework by developing the first library of virtual patients with bronchitis. These virtual patients were developed based on CT images of confirmed COPD patients with varied bronchitis severity. The human models were virtually imaged at 6.3 and 12.6 mGy dose levels using a scanner-specific simulator (DukeSim), synthesizing clinical PCCT and EICT scanners (NAEOTOM Alpha, FLASH, Siemens). The projections were reconstructed with two algorithms and kernels at different matrix sizes and slice thicknesses. The CT images were used to quantify clinically relevant airway measurements ("Pi10" and "WA%") and compared against their ground truth values. Compared to EICT, PCCT provided more accurate Pi10 and WA% measurements by 63.1% and 68.2%, respectively. For both technologies, sharper kernels and larger matrix sizes led to more reliable bronchitis quantifications. This study highlights the potential advantages of PCCT against EICT in characterizing bronchitis utilizing a virtual imaging platform.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37125263

RESUMO

Photon-counting CT (PCCT) is an emerging imaging technology with potential improvements in quantification and rendition of micro-structures due to its smaller detector sizes. The aim of this study was to assess the performance of a new PCCT scanner (NAEOTOM Alpha, Siemens) in quantifying clinically relevant bone imaging biomarkers for characterization of common bone diseases. We evaluated the ability of PCCT in quantifying microarchitecture in bones compared to conventional energy-integrating CT. The quantifications were done through virtual imaging trials, using a 50 percentile BMI male virtual patient, with a detailed model of trabecular bone with varied bone densities in the lumbar spine. The virtual patient was imaged using a validated CT simulator (DukeSim) at CTDIvol of 20 and 40 mGy for three scan modes: ultra-high-resolution PCCT (UHR-PCCT), high-resolution PCCT (HR-PCCT), and a conventional energy-integrating CT (EICT) (FORCE, Siemens). Further, each scan mode was reconstructed with varying parameters to evaluate their effect on quantification. Bone mineral density (BMD), trabecular volume to total bone volume (BV/TV), and radiomics texture features were calculated in each vertebra. The most accurate BMD measurements relative to the ground truth were UHR-PCCT images (error: 3.3% ± 1.5%), compared to HR-PCCT (error: 5.3% ± 2.0%) and EICT (error: 7.1% ± 2.0%). UHR-PCCT images outperformed EICT and HR-PCCT. In BV/TV quantifications, UHR-PCCT (errors of 29.7% ± 11.8%) outperformed HR-PCCT (error: 80.6% ± 31.4%) and EICT (error: 67.3% ± 64.3). UHR-PCCT and HR-PCCT texture features were sensitive to anatomical changes using the sharpest kernel. Conversely, the texture radiomics showed no clear trend to reflect the progression of the disease in EICT. This study demonstrated the potential utility of PCCT technology in improved performance of bone quantifications leading to more accurate characterization of bone diseases.

6.
Chest ; 163(5): 1084-1100, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462532

RESUMO

BACKGROUND: CT scan has notable potential to quantify the severity and progression of emphysema in patients. Such quantification should ideally reflect the true attributes and pathologic conditions of subjects, not scanner parameters. To achieve such an objective, the effects of the scanner conditions need to be understood so the influence can be mitigated. RESEARCH QUESTION: How do CT scan imaging parameters affect the accuracy of emphysema-based quantifications and biomarkers? STUDY DESIGN AND METHODS: Twenty anthropomorphic digital phantoms were developed with diverse anatomic attributes and emphysema abnormalities informed by a real COPD cohort. The phantoms were input to a validated CT scan simulator (DukeSim), modeling a commercial scanner (Siemens Flash). Virtual images were acquired under various clinical conditions of dose levels, tube current modulations (TCM), and reconstruction techniques and kernels. The images were analyzed to evaluate the effects of imaging parameters on the accuracy of density-based quantifications (percent of lung voxels with HU < -950 [LAA-950] and 15th percentile of lung histogram HU [Perc15]) across varied subjects. Paired t tests were performed to explore statistical differences between any two imaging conditions. RESULTS: The most accurate imaging condition corresponded to the highest acquired dose (100 mAs) and iterative reconstruction (SAFIRE) with the smooth kernel of I31, where the measurement errors (difference between measurement and ground truth) were 35 ± 3 Hounsfield Units (HU), -4% ± 5%, and 26 ± 10 HU (average ± SD), for the mean lung HU, LAA-950, and Perc15, respectively. Without TCM and at the I31 kernel, increase of dose (20 to 100 mAs) improved the lung mean absolute error (MAE) by 4.2 ± 2.3 HU (average ± SD). TCM did not contribute to a systematic improvement of lung MAE. INTERPRETATION: The results highlight that although CT scan quantification is possible, its reliability is impacted by the choice of imaging parameters. The developed virtual imaging trial platform in this study enables comprehensive evaluation of CT scan methods in reliable quantifications, an effort that cannot be readily made with patient images or simplistic physical phantoms.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Reprodutibilidade dos Testes , Enfisema Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Doses de Radiação
7.
Phys Med Biol ; 67(19)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36096127

RESUMO

Objective. X-ray-based imaging modalities including mammography and computed tomography (CT) are widely used in cancer screening, diagnosis, staging, treatment planning, and therapy response monitoring. Over the past few decades, improvements to these modalities have resulted in substantially improved efficacy and efficiency, and substantially reduced radiation dose and cost. However, such improvements have evolved more slowly than would be ideal because lengthy preclinical and clinical evaluation is required. In many cases, new ideas cannot be evaluated due to the high cost of fabricating and testing prototypes. Wider availability of computer simulation tools could accelerate development of new imaging technologies. This paper introduces the development of a new open-access simulation environment for x-ray-based imaging. The main motivation of this work is to publicly distribute a fast but accurate ray-tracing x-ray and CT simulation tool along with realistic phantoms and 3D reconstruction capability, building on decades of developments in industry and academia.Approach. The x-ray-based Cancer Imaging Simulation Toolkit (XCIST) is developed in the context of cancer imaging, but can more broadly be applied. XCIST is physics-based, written in Python and C/C++, and currently consists of three major subsets: digital phantoms, the simulator itself (CatSim), and image reconstruction algorithms; planned future features include a fast dose-estimation tool and rigorous validation. To enable broad usage and to model and evaluate new technologies, XCIST is easily extendable by other researchers. To demonstrate XCIST's ability to produce realistic images and to show the benefits of using XCIST for insight into the impact of separate physics effects on image quality, we present exemplary simulations by varying contributing factors such as noise and sampling.Main results. The capabilities and flexibility of XCIST are demonstrated, showing easy applicability to specific simulation problems. Geometric and x-ray attenuation accuracy are shown, as well as XCIST's ability to model multiple scanner and protocol parameters, and to attribute fundamental image quality characteristics to specific parameters.Significance. This work represents an important first step toward the goal of creating an open-access platform for simulating existing and emerging x-ray-based imaging systems. While numerous simulation tools exist, we believe the combined XCIST toolset provides a unique advantage in terms of modeling capabilities versus ease of use and compute time. We publicly share this toolset to provide an environment for scientists to accelerate and improve the relevance of their research in x-ray and CT.


Assuntos
Acesso à Informação , Tomografia Computadorizada por Raios X , Algoritmos , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Raios X
8.
Med Phys ; 49(8): 5439-5450, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690885

RESUMO

PURPOSE: The gold-standard method for estimation of patient-specific organ doses in digital tomosynthesis (DT) requires protocol-specific Monte Carlo (MC) simulations of radiation transport in anatomically accurate computational phantoms. Although accurate, MC simulations are computationally expensive, leading to a turnaround time in the order of core hours for simulating a single exam. This limits their clinical utility. The purpose of this study is to overcome this limitation by utilizing patient- and protocol-specific MC simulations to develop a comprehensive database of air-kerma-normalized organ dose coefficients for a virtual population of adult and pediatric patient models over an expanded set of exam protocols in DT for retrospective and prospective estimation of radiation dose in clinical tomosynthesis. MATERIALS AND METHODS: A clinically representative virtual population of 14 patient models was used, with pediatric models (M and F) at ages 1, 5, 10, and 15 and adult patient models (M and F) with body mass index (BMIs) at 10th, 50th, and 90th percentiles of the US population. A graphics processing unit (GPU)-based MC simulation framework was used to simulate organ doses in the patient models, incorporating the scanner-specific configuration of a clinical DT system (VolumeRad, GE Healthcare, Waukesha, WI, USA) and an expanded set of exam protocols, including 21 distinct acquisition techniques for imaging a variety of anatomical regions (head and neck, thorax, spine, abdomen, and knee). Organ dose coefficients (hn ) were estimated by normalizing organ dose estimates to air kerma at 70 cm (X70cm ) from the source in the scout view. The corresponding coefficients for projection radiography were approximated using organ doses estimated for the scout view. The organ dose coefficients were further used to compute air-kerma-normalized patient-specific effective dose coefficients (Kn ) for all combinations of patients and protocols, and a comparative analysis examining the variation of radiation burden across sex, age, and exam protocols in DT, and with projection radiography was performed. RESULTS: The database of organ dose coefficients (hn ) containing 294 distinct combinations of patients and exam protocols was developed and made publicly available. The values of Kn were observed to produce estimates of effective dose in agreement with prior studies and consistent with magnitudes expected for pediatric and adult patients across the different exam protocols, with head and neck regions exhibiting relatively lower and thorax and C-spine (apsc, apcs) regions relatively higher magnitudes. The ratios (r = Kn /Kn ,rad ) quantifying the differences air-kerma-normalized patient-specific effective doses between DT and projection radiography were centered around 1.0 for all exam protocols, with the exception of protocols covering the knee region (pawk, patk). CONCLUSIONS: This study developed a database of organ dose coefficients for a virtual population of 14 adult and pediatric XCAT patient models over a set of 21 exam protocols in DT. Using empirical measurements of air kerma in the clinic, these organ dose coefficients enable practical retrospective and prospective patient-specific radiation dosimetry. The computation of air-kerma-normalized patient-specific effective doses further enables the comparison of radiation burden to the patient populations between protocols and between imaging modalities (e.g., DT and projection radiography), as presented in this study.


Assuntos
Pediatria , Radiometria , Adulto , Criança , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Estudos Prospectivos , Doses de Radiação , Radiometria/métodos , Estudos Retrospectivos
9.
Med Phys ; 49(8): 5038-5051, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35722721

RESUMO

PURPOSE: We aim at developing a model-based algorithm that compensates for the effect of both pulse pileup (PP) and charge sharing (CS) and evaluates the performance using computer simulations. METHODS: The proposed PCP algorithm for PP and CS compensation uses cascaded models for CS and PP we previously developed, maximizes Poisson log-likelihood, and uses an efficient three-step exhaustive search. For comparison, we also developed an LCP algorithm that combines models for a loss of counts (LCs) and CS. Two types of computer simulations, slab- and computed tomography (CT)-based, were performed to assess the performance of both PCP and LCP with 200 and 800 mA, (300 µm)2  × 1.6-mm cadmium telluride detector, and a dead-time of 23 ns. A slab-based assessment used a pair of adipose and iodine with different thicknesses, attenuated X-rays, and assessed the bias and noise of the outputs from one detector pixel; a CT-based assessment simulated a chest/cardiac scan and a head-and-neck scan using 3D phantom and noisy cone-beam projections. RESULTS: With the slab simulation, the PCP had little or no biases when the expected counts were sufficiently large, even though a probability of count loss (PCL) due to dead-time loss or PP was as high as 0.8. In contrast, the LCP had significant biases (>±2 cm of adipose) when the PCL was higher than 0.15. Biases were present with both PCP and LCP when the expected counts were less than 10-120 per datum, which was attributed to the fact that the maximum likelihood did not approach the asymptote. The noise of PCP was within 8% from the Cramér-Rao lower bounds for most cases when no significant bias was present. The two CT studies essentially agreed with the slab simulation study. PCP had little or no biases in the estimated basis line integrals, reconstructed basis density maps, and synthesized monoenergetic CT images. But the LCP had significant biases in basis line integrals when X-ray beams passed through lungs and near the body and neck contours, where the PCLs were above 0.15. As a consequence, basis density maps and monoenergetic CT images obtained by LCP had biases throughout the imaged space. CONCLUSION: We have developed the PCP algorithm that uses the PP-CS model. When the expected counts are more than 10-120 per datum, the PCP algorithm is statistically efficient and successfully compensates for the effect of the spectral distortion due to both PP and CS providing little or no biases in basis line integrals, basis density maps, and monoenergetic CT images regardless of count-rates. In contrast, the LCP algorithm, which models an LC due to pileup, produces severe biases when incident count-rates are high and the PCL is 0.15 or higher.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Simulação por Computador , Imagens de Fantasmas , Radiografia , Tomografia Computadorizada por Raios X/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-35611365

RESUMO

The purpose of this study was to develop a virtual imaging framework that simulates a new photon-counting CT (PCCT) system (NAEOTOM Alpha, Siemens). The PCCT simulator was built upon the DukeSim platform, which generates projection images of computational phantoms given the geometry and physics of the scanner and imaging parameters. DukeSim was adapted to account for the geometry of the PCCT prototype. To model the photon-counting detection process, we utilized a Monte Carlo-based detector model with the known properties of the detectors. We validated the simulation platform against experimental measurements. The images were acquired at four dose levels (CTDIvol of 1.5, 3.0, 6.0, and 12.0 mGy) and reconstructed with three kernels (Br36, Br40, Br48). The experimental acquisitions were replicated using our developed simulation platform. The real and simulated images were quantitatively compared in terms of image quality metrics (HU values, noise magnitude, noise power spectrum, and modulation transfer function). The clinical utility of our framework was demonstrated by conducting two clinical applications (COPD quantifications and lung nodule radiomics). The phantoms with relevant pathologies were imaged with DukeSim modeling the PCCT systems. Different imaging parameters (e.g., dose, reconstruction techniques, pixel size, and slice thickness) were altered to investigate their effects on task-based quantifications. We successfully implemented the acquisition and physics attributes of the PCCT prototype into the DukeSim platform. The discrepancy between the real and simulated data was on average about 2 HU in terms of noise magnitude, 0.002 mm-1 in terms of noise power spectrum peak frequency and 0.005 mm-1 in terms of the frequency at 50% MTF. Analysis suggested that lung lesion radiomics to be more accurate with reduced pixel size and slice thickness. For COPD quantifications, higher doses, thinner slices, and softer kernels yielded more accurate quantification of density-based biomarkers. Our developed virtual imaging platform enables systematic comparison of new PCCT technologies as well as optimization of the imaging parameters for specific clinical tasks.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35574205

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease and a major cause of death and disability worldwide. Quantitative CT is a powerful tool to better understand the heterogeneity and severity of this disease. Quantitative CT is being increasingly used in COPD research, and the recent advancements in CT technology have made it even more encouraging. One recent advancement has been the development of photon-counting detectors, offering higher spatial resolution, higher image contrast, and lower noise levels in the images. However, the quantification performance of this new technology compared to conventional scanners remains unknown. Additionally, different protocol settings (e.g., different dose levels, slice thicknesses, reconstruction kernels and algorithms) affect quantifications in an unsimilar fashion. This study investigates the potential advantages of photon-counting CT (PCCT) against conventional energy-integrating detector (EID) CT and explores the effects of protocol settings on lung density quantifications in COPD patients. This study was made possible using a virtual imaging platform, taking advantage of anthropomorphic phantoms with COPD (COPD-XCAT) and a scanner-specific CT simulator (DukeSim). Having the physical and geometrical properties of three Siemens commercial scanners (Flash, Force for EID and NAEOTOM Alpha for PCCT) modeled, we simulated CT images of ten COPD-XCAT phantoms at 0.63 and 3.17 mGy dose levels and reconstructed at three levels of kernel sharpness. The simulated CT images were quantified in terms of "Lung mean absolute error (MAE)," "LAA -950," "Perc 15," "Lung mass" imaging biomarkers and compared against the ground truth values of the phantoms. The intra-scanner assessment demonstrated the superior qualitative and quantitative performance of the PCCT scanner over the conventional scanners (21.01% and 22.74% mean lung MAE improvement, and 53.97% and 68.13% mean LAA -950 error improvement compared to Flash and Force). The results also showed that higher mAs, thinner slices, smoother kernels, and iterative reconstruction could lead to more accurate and precise quantification scores. This study underscored the qualitative and quantitative benefits of PCCT against conventional EID scanners as well as the importance of optimal protocol choice within scanners for more accurate quantifications.

12.
Phys Med Biol ; 66(18)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34464942

RESUMO

Although tube current modulation (TCM) is routinely implemented in modern computed tomography (CT) scans, no existing CT simulator is capable of generating realistic images with TCM. The goal of this study was to develop such a framework to (1) facilitate patient-specific optimization of TCM parameters and (2) enable future virtual imaging trials (VITs) with more clinically realistic image quality and x-ray flux distributions. The framework was created by developing a TCM module and integrating it with an existing CT simulator (DukeSim). The developed module utilizes scanner-calibrated TCM parameters and two localizer radiographs to compute the mAs for each simulated CT projection. This simulation pipeline was validated in two parts. First, DukeSim was validated in the context of a commercial scanner with TCM (SOMATOM Force, Siemens Healthineers) by imaging a physical CT phantom (Mercury, Sun Nuclear) and its computational analogue. Second, the TCM module was validated by imaging a computational anthropomorphic phantom (ATOM, CIRS) using DukeSim with real and module-generated TCM profiles. The validation demonstrated DukeSim's realism in terms of noise magnitude, noise texture, spatial resolution, and image contrast (with average differences of 0.38%, 6.31%, 0.43%, and -9 HU, respectively). It also demonstrated the TCM module's realism in terms of projection-level mAs and resulting noise magnitude (2.86% and -2.60%, respectively). Finally, the framework was applied to a pilot VIT simulating images of three computational anthropomorphic phantoms (XCAT, with body mass indices (BMIs) of 24.3, 28.2, and 33.0) under five different TCM settings. The optimal TCM for each phantom was characterized based on various criteria, such as minimizing mAs or maximizing image quality. 'Very Weak' TCM minimized noise for the 24.3 BMI phantom, while 'Very Strong' TCM minimized noise for the 33.0 BMI phantom. This illustrates the utility of the developed framework for future optimization studies of TCM parameters and, more broadly, large-scale VITs with scanner-specific TCM.


Assuntos
Tomografia Computadorizada por Raios X , Simulação por Computador , Humanos , Imagens de Fantasmas , Doses de Radiação , Raios X
14.
IEEE Trans Med Imaging ; 40(6): 1711-1725, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33690114

RESUMO

Our approach differs from the usual global measure of cardiac efficiency by using PET/MRI to measure efficiency of small pieces of cardiac tissue whose limiting size is equal to the spatial resolution of the PET scanner. We initiated a dynamic cardiac PET study immediately prior to the injection of 15.1 mCi of 11C-acetate acquiring data for 25 minutes while simultaneously acquiring MRI cine data. 1) A 3D finite element (FE) biomechanical model of the imaged heart was constructed by utilizing nonrigid deformable image registration to alter the Dassault Systèmes FE Living Heart Model (LHM) to fit the geometry in the cardiac MRI cine data. The patient specific FE cardiac model with estimates of stress, strain, and work was transformed into PET/MRI format. 2) A 1-tissue compartment model was used to calculate wash-in (K1) and the linear portion of the decay in the PET 11C-acetate time activity curve (TAC) was used to calculate the wash-out k2(mono) rate constant. K1 was used to calculate blood flow and k2(mono) was used to calculate myocardial volume oxygen consumption ( MVO2 ). 3) Estimates of stress and strain were used to calculate Myocardial Equivalent Minute Work ( MEMW ) and Cardiac Efficiency = MEMW/MVO2 was then calculated for 17 tissue segments of the left ventricle. The global MBF was 0.96 ± 0.15 ml/min/gm and MVO2 ranged from 8 to 17 ml/100gm/min. Six central slices of the MRI cine data provided a range of MEMW of 0.1 to 0.4 joules/gm/min and a range of Cardiac Efficiency of 6 to 18%.


Assuntos
Miocárdio , Consumo de Oxigênio , Circulação Coronária , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética
15.
Phys Med Biol ; 66(7)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33652421

RESUMO

Virtual imaging trials (VITs), defined as the process of conducting clinical imaging trials using computer simulations, offer a time- and cost-effective alternative to traditional imaging trials for CT. The clinical potential of VITs hinges on the realism of simulations modeling the image acquisition process, where the accurate scanner-specific simulation of scatter in a time-feasible manner poses a particular challenge. To meet this need, this study proposes, develops, and validates a rapid scatter estimation framework, based on GPU-accelerated Monte Carlo (MC) simulations and denoising methods, for estimating scatter in single source, dual-source, and photon-counting CT. A CT simulator was developed to incorporate parametric models for an anti-scatter grid and a curved energy integrating detector with an energy-dependent response. The scatter estimates from the simulator were validated using physical measurements acquired on a clinical CT system using the standard single-blocker method. The MC simulator was further extended to incorporate a pre-validated model for a PCD and an additional source-detector pair to model cross scatter in dual-source configurations. To estimate scatter with desirable levels of statistical noise using a manageable computational load, two denoising methods using a (1) convolutional neural network and an (2) optimized Gaussian filter were further deployed. The viability of this framework for clinical VITs was assessed by integrating it with a scanner-specific ray-tracer program to simulate images for an image quality (Mercury) and an anthropomorphic phantom (XCAT). The simulated scatter-to-primary ratios agreed with physical measurements within 4.4% ± 10.8% across all projection angles and kVs. The differences of ∼121 HU between images with and without scatter, signifying the importance of scatter for simulating clinical images. The denoising methods preserved the magnitudes and trends observed in the reference scatter distributions, with an averaged rRMSE value of 0.91 and 0.97 for the two methods, respectively. The execution time of ∼30 s for simulating scatter in a single projection with a desirable level of statistical noise indicates a major improvement in performance, making our tool an eligible candidate for conducting extensive VITs spanning multiple patients and scan protocols.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Espalhamento de Radiação
16.
Eur Radiol ; 31(9): 7022-7030, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33624163

RESUMO

OBJECTIVES: Quantifying radiation burden is essential for justification, optimization, and personalization of CT procedures and can be characterized by a variety of risk surrogates inducing different radiological risk reflections. This study compared how twelve such metrics can characterize risk across patient populations. METHODS: This study included 1394 CT examinations (abdominopelvic and chest). Organ doses were calculated using Monte Carlo methods. The following risk surrogates were considered: volume computed tomography dose index (CTDIvol), dose-length product (DLP), size-specific dose estimate (SSDE), DLP-based effective dose (EDk ), dose to a defining organ (ODD), effective dose and risk index based on organ doses (EDOD, RI), and risk index for a 20-year-old patient (RIrp). The last three metrics were also calculated for a reference ICRP-110 model (ODD,0, ED0, and RI0). Lastly, motivated by the ICRP, an adjusted-effective dose was calculated as [Formula: see text]. A linear regression was applied to assess each metric's dependency on RI. The results were characterized in terms of risk sensitivity index (RSI) and risk differentiability index (RDI). RESULTS: The analysis reported significant differences between the metrics with EDr showing the best concordance with RI in terms of RSI and RDI. Across all metrics and protocols, RSI ranged between 0.37 (SSDE) and 1.29 (RI0); RDI ranged between 0.39 (EDk) and 0.01 (EDr) cancers × 103patients × 100 mGy. CONCLUSION: Different risk surrogates lead to different population risk characterizations. EDr exhibited a close characterization of population risk, also showing the best differentiability. Care should be exercised in drawing risk predictions from unrepresentative risk metrics applied to a population. KEY POINTS: • Radiation risk characterization in CT populations is strongly affected by the surrogate used to describe it. • Different risk surrogates can lead to different characterization of population risk. • Healthcare professionals should exercise care in ascribing an implicit risk to factors that do not closely reflect risk.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Adulto , Benchmarking , Humanos , Método de Monte Carlo , Doses de Radiação , Adulto Jovem
17.
Med Phys ; 47(12): 6087-6102, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33006759

RESUMO

PURPOSE: Many interventional procedures aim at changing soft tissue perfusion or blood flow. One problem at present is that soft tissue perfusion and its changes cannot be assessed in an interventional suite because cone-beam computed tomography is too slow (it takes 4-10 s per volume scan). In order to address the problem, we propose a novel method called IPEN for Intra-operative four-dimensional soft tissue PErfusion using a standard x-ray system with No gantry rotation. METHODS: IPEN uses two input datasets: (a) the contours and locations of three-dimensional regions-of-interest (ROIs) such as arteries and sub-sections of cancerous lesions, and (b) a series of x-ray projection data obtained from an intra-arterial contrast injection to contrast enhancement to wash-out. IPEN then estimates a time-enhancement curve (TEC) for each ROI directly from projections without reconstructing cross-sectional images by maximizing the agreement between synthesized and measured projections with a temporal roughness penalty. When path lengths through ROIs are known for each x-ray beam, the ROI-specific enhancement can be accurately estimated from projections. Computer simulations are performed to assess the performance of the IPEN algorithm. Intra-arterial contrast-enhanced liver scans over 25 s were simulated using XCAT phantom version 2.0 with heterogeneous tissue textures and cancerous lesions. The following four sub-studies were performed: (a) The accuracy of the estimated TECs with overlapped lesions was evaluated at various noise (dose) levels with either homogeneous or heterogeneous lesion enhancement patterns; (b) the accuracy of IPEN with inaccurate ROI contours was assessed; (c) we investigated how overlapping ROIs and noise in projections affected the accuracy of the IPEN algorithm; and (d) the accuracy of the perfusion indices was assessed. RESULTS: The TECs estimated by IPEN were sufficiently accurate at a reference dose level with the root-mean-square deviation (RMSD) of 0.0027 ± 0.0001 cm-1 or 13 ± 1 Hounsfield unit (mean ± standard deviation) for the homogeneous lesion enhancement and 0.0032 ± 0.0005 cm-1 for the heterogeneous enhancement (N = 20 each). The accuracy was degraded with decreasing doses: The RMSD with homogeneous enhancement was 0.0220 ± 0.0003 cm-1 for 20% of the reference dose level. Performing 3 × 3 pixel averaging on projection data improved the RMSDs to 0.0051 ± 0.0002 cm-1 for 20% dose. When the ROI contours were inaccurate, smaller ROI contours resulted in positive biases in TECs, whereas larger ROI contours produced negative biases. The bias remained small, within ± 0.0070 cm-1 , when the Sorenson-Dice coefficients (SDCs) were larger than 0.81. The RMSD of the TEC estimation was strongly associated with the condition of the problem, which can be empirically quantified using the condition number of a matrix A z that maps a vector of ROI enhancement values z to projection data and a weighted variance of projection data: a linear correlation coefficient (R) was 0.794 (P < 0.001). The perfusion index values computed from the estimated TECs agreed well with the true values (R ≥ 0.985, P < 0.0001). CONCLUSION: The IPEN algorithm can estimate ROI-specific TECs with high accuracy especially when 3 × 3 pixel averaging is applied, even when lesion enhancement is heterogeneous, or ROI contours are inaccurate but the SDC is at least 0.81.


Assuntos
Imagem de Perfusão , Tomografia Computadorizada por Raios X , Simulação por Computador , Estudos Transversais , Perfusão , Imagens de Fantasmas , Rotação , Raios X
18.
Phys Med Biol ; 64(21): 215020, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31539892

RESUMO

The increasing awareness of the adverse effects associated with radiation exposure in computed tomography (CT) has necessesitated the quantification of dose delivered to patients for better risk assessment in the clinic. The current methods for dose quantification used in the clinic are approximations, lacking realistic models for the irradiation conditions utilized in the scan and the anatomy of the patient being imaged, which limits their relevance for a particular patient. The established gold-standard technique for individualized dose quantification uses Monte Carlo (MC) simulations to obtain patient-specific estimates of organ dose in anatomically realistic computational phantoms to provide patient-specific estimates of organ dose. Although accurate, MC simulations are computationally expensive, which limits their utility for time-constrained applications in the clinic. To overcome these shortcomings, a real-time GPU-based MC tool based on FDA's MC-GPU framework was developed for patient and scanner-specific dosimetry in the clinic. The tool was validated against (1) AAPM's TG-195 reference datasets and (2) physical measurements of dose acquired using TLD chips in adult and pediatric anthropomorphic phantoms. To demonstrate its utility towards providing individualized dose estimates, it was integrated with an automatic segmentation method for generating patient-specific models, which were then used to estimate patient- and scanner-specific organ doses for a select population of 50 adult patients using a clinically relevant CT protocol. The organ dose estimates were compared to corresponding dose estimates from a previously validated MC method based on Penelope. The dose estimates from our MC tool agreed within 5% for all organs (except thyroid) tabulated by TG-195 and within 10% for all TLD locations in the adult and pediactric phantoms, across all validation cases. Compared against Penelope, the organ dose estimates agreed within 3% on average for all organs in the patient population study. The average run duration for each patient was estimated at 23.79 s, representing a significant speedup (~700×) over existing non-parallelized MC methods. The accuracy of dose estimates combined with a significant improvement in execution times suggests a feasible solution utilizing the proposed MC tool for real-time individualized dosimetry in the clinic.


Assuntos
Método de Monte Carlo , Doses de Radiação , Radiometria/métodos , Tomografia Computadorizada por Raios X , Adulto , Criança , Humanos , Masculino , Imagens de Fantasmas , Exposição à Radiação , Fatores de Tempo
19.
Med Phys ; 46(11): 5262-5272, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442324

RESUMO

PURPOSE: The purpose of this study was to simulate and validate organ doses from different computed tomography (CT) localizer radiograph geometries using Monte Carlo methods for a population of patients. METHODS: A Monte Carlo method was developed to estimate organ doses from CT localizer radiographs using PENELOPE. The method was validated by comparing dosimetry estimates with measurements using an anthropomorphic phantom imbedded with thermoluminescent dosimeters (TLDs) scanned on a commercial CT system (Siemens SOMATOM Flash). The Monte Carlo simulation platform was then applied to conduct a population study with 57 adult computational phantoms (XCAT). In the population study, clinically relevant chest localizer protocols were simulated with the x-ray tube in anterior-posterior (AP), right lateral, and PA positions. Mean organ doses and associated standard deviations (in mGy) were then estimated for all simulations. The obtained organ doses were studied as a function of patient chest diameter. Organ doses for breast and lung were compared across different views and represented as a percentage of organ doses from rotational CT scans. RESULTS: The validation study showed an agreement between the Monte Carlo and physical TLD measurements with a maximum percent difference of 15.5% and a mean difference of 3.5% across all organs. The XCAT population study showed that breast dose from AP localizers was the highest with a mean value of 0.24 mGy across patients, while the lung dose was relatively consistent across different localizer geometries. The organ dose estimates were found to vary across the patient population, partially explained by the changes in the patient chest diameter. The average effective dose was 0.18 mGy for AP, 0.09 mGy for lateral, and 0.08 mGy for PA localizer. CONCLUSION: A platform to estimate organ doses in CT localizer scans using Monte Carlo methods was implemented and validated based on comparison with physical dose measurements. The simulation platform was applied to a virtual patient population, where the localizer organ doses were found to range within 0.4%-8.6% of corresponding organ doses for a typical CT scan, 0.2%-3.3% of organ doses for a CT pulmonary angiography scan, and 1.1%-20.8% of organ doses for a low-dose lung cancer screening scan.


Assuntos
Método de Monte Carlo , Doses de Radiação , Tomografia Computadorizada por Raios X , Adulto , Detecção Precoce de Câncer , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas
20.
Artigo em Inglês | MEDLINE | ID: mdl-31413426

RESUMO

In several nuclear cardiac imaging applications (SPECT and PET), images are formed by reconstructing tomographic data using an iterative reconstruction algorithm with corrections for physical factors involved in the imaging detection process and with corrections for cardiac and respiratory motion. The physical factors are modeled as coefficients in the matrix of a system of linear equations and include attenuation, scatter, and spatially varying geometric response. The solution to the tomographic problem involves solving the inverse of this system matrix. This requires the design of an iterative reconstruction algorithm with a statistical model that best fits the data acquisition. The most appropriate model is based on a Poisson distribution. Using Bayes Theorem, an iterative reconstruction algorithm is designed to determine the maximum a posteriori estimate of the reconstructed image with constraints that maximizes the Bayesian likelihood function for the Poisson statistical model. The a priori distribution is formulated as the joint entropy (JE) to measure the similarity between the gated cardiac PET image and the cardiac MRI cine image modeled as a FE mechanical model. The developed algorithm shows the potential of using a FE mechanical model of the heart derived from a cardiac MRI cine scan to constrain solutions of gated cardiac PET images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...